Stereoselective synthesis of 3- $\boldsymbol{\beta}$-d-ribofuranosylpyrazole from 2,3-O-Isopropylidene-d-ribose; a new route to pyrazole \boldsymbol{C}-nucleosides

Anthony D. Rycroft, ${ }^{a}$ Gurdial Singh ${ }^{*, a}$ and Richard H. Wightman ${ }^{*, b}$
${ }^{a}$ School of Science and Technology, University of Teesside, Middlesbrough, Cleveland TS1 3BA, UK
${ }^{b}$ Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

2,3-O-Isopropylidene-D-ribose has been converted stereoselectively into 3(5)-(β-D-ribofuranosyl)pyrazole 11, a precursor for the C-nucleoside antibiotics pyrazofurin and formycin.

Since the isolation of the C-nucleoside antibiotics, there has been considerable interest in synthetic approaches to these compounds, including in particular the pyrazole C-nucleosides formycin 1 and pyrazofurin $2 .{ }^{1}$ Previous work in one of our

laboratories has led to the development of routes to pentofuranosylpyrazoles using acetylenic intermediates, and we have shown that the ribofuranosylpyrazole 3 can be efficiently converted in one step into the 1,4-dinitropyrazole 4 (Scheme 1) by treatment with $\mathrm{NH}_{4} \mathrm{NO}_{3}$, trifluoroacetic acid and trifluoroacetic anhydride, ${ }^{2}$ and that 4 can be transformed, also in one high-yielding step, to the doubly functionalized pyrazole 5 using NaCN in aqueous ethanol. ${ }^{3}$ Formycin $\mathbf{1}^{3}$ and pyrazofurin 2^{4} can then be obtained from 4. The synthesis of 3 , however, was not totally satisfactory, depending on the addition of an acetylenic Grignard reagent to 2,3,5-tri- O-benzyl-D-ribofuranose which proceeds with somewhat low stereoselectivity. ${ }^{5}$ We here describe a new and more direct synthesis of intermediate 3 from 2,3- O-isopropylidene-D-ribofuranose, a derivative of ribose which is much more easily prepared than is the tribenzyl ether, and which relies upon the stereoselective reduction of an acetylenic hemiketal.

The lactone 6 (Scheme 2) is easily prepared from 2,3-O-isopropylidene-D-ribofuranose ${ }^{6}$ by silylation followed by oxidation using KMnO_{4}. Treatment of 6 with the lithium derivative of 1,1-diethoxyprop-2-yne gave the hemiketal 7 (85%), which on reduction with NaBH_{4} gave the syn- (threo-) diol 8, as an inseparable 6:1 mixture with its diastereoisomer (90% combined yield). The diastereoselectivity in this reduction is in the sense predicted from a Felkin-Anh model ${ }^{7}$ for the transition state; we have recently described a similar stereoselectivity in the reduction of the adduct from 6 and allylmagnesium chloride, ${ }^{8}$ and other related hemiacetals behave similarly. ${ }^{9}$ Treatment of this mixture of diols with TsCl in
pyridine led, by selective sulfonation at the prop-2-ynlic alcohol, ${ }^{5}$ to the formation of the β-alkyne $9(52 \%)$, together with the α-anomer (10%); a third product of β-L-lyxoconfiguration was also formed (7%) as a result of sulfonation at the alternative alcohol. \dagger The structure of the major product 9 was supported by the observation of small values (2.85 and 1.85 Hz respectively) for the coupling constants $J_{4,5}$ and $J_{6,7}$, and the observation of strong NOE effects between $4-\mathrm{H}$ and $7-\mathrm{H}$. When 9 was treated with acetic acid and aqueous HCl , followed by hydrazine hydrate, the pyrazolyl diol 10 was obtained. This on desilylation gave $3(5)$-(β-D-ribosuranosyl) pyrazole 11 , which could be acetylated to produce the tetra-acetyl compound 3, with spectroscopic and optical properties $\left\{[\alpha]_{D}-10.9\right.$ (c 1.28 $\left.\left.\mathrm{CHCl}_{3}\right)\right\}, \ddagger$ in excellent agreement with those reported $\left\{[\alpha]_{\mathrm{D}}\right.$ -9.9 (c $\left.\left.3.4, \mathrm{CHCl}_{3}\right)\right\} .^{2}$

Our findings described here, together with earlier reports of the efficient conversion of 3 into formycin and pyrazofurin, ${ }^{2-4}$ offer an effective route to these antibiotics. The strategy used is likely to be of value in gaining stereocontrolled access to other C-glycosides and C-nucleosides.

Experimental

8-O-tert-Butyldiphenylsilyl-2,2,3,3-tetradehydro-2,3-dideoxy-5,6-O-isopropylidene-D-altro-octose diethyl acetal 8

 Sodium boranuide (1.07 g) was added in portions over 10 min to a stirred solution of the hemiacetal $7(1.57 \mathrm{~g})$ in methanol (75 cm^{3}) at $0^{\circ} \mathrm{C}$. After 1 h , the mixture was evaporated and the residue was partitioned between water ($120 \mathrm{~cm}^{3}$) and ethyl acetate $\left(4 \times 100 \mathrm{~cm}^{3}\right)$. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give an oil which was chromatographed on silica, with light petroleum-diethyl ether (7:3) as eluent to give the $\operatorname{diol} 8(1.42 \mathrm{~g}, 90 \%)$ as a $6: 1$ mixture with the D -allo-epimer, $[\alpha]_{\mathrm{D}}-10.9\left(c 2.94, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.07(9 \mathrm{H}$, s), $1.20(6 \mathrm{H}, \mathrm{t}), 1.38(6 \mathrm{H}, \mathrm{s}), 3.05(1 \mathrm{H}, \mathrm{d}, J 5.3), \S 3.4-3.95(7 \mathrm{H}$,[^0]

3

5

Scheme 1

Scheme $2 \mathrm{i}, \mathrm{LiC} \equiv \mathrm{C}-\mathrm{CH}(\mathrm{OEt})_{2},-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, $\mathrm{TsCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 90^{\circ} \mathrm{C}, 25 \mathrm{~h}$; iv, HOAc, HCl aq., room temp., then $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, heat (55%); v, $\mathrm{Bu}_{4} \mathrm{NF}$, THF, room temp. (95%); vi, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, DMAP, room temp., $5 \mathrm{~h}(95 \%$)
$\mathrm{m}), 4.15-4.4(3 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{ddd}, J 1.0,1.9,3.8), 5.30(1 \mathrm{H}, \mathrm{br}$ s), $7.4(6 \mathrm{H}, \mathrm{m})$ and $7.7(4 \mathrm{H}, \mathrm{m})$ [Found: $\mathrm{MNH}_{4}{ }^{+}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ 574.3200. Calc. for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{NO}_{7} \mathrm{Si}, 574.3200$].

4,7-Anhydro-8-O-tert-butyldiphenylsilyl-2,2,3,3-tetradehydro-2,3-dideoxy-5,6-O-isopropylidene-D-allo-octose diethyl acetal 9 A solution of the diol $8(1.03 \mathrm{~g})$ and toluene-p-sulfonyl chloride $(1.27 \mathrm{~g})$ in dry pyridine $\left(40 \mathrm{~cm}^{3}\right)$ was heated at $85-90^{\circ} \mathrm{C}$ for 25 h . After cooling of the reaction mixture it was diluted with water $\left(0.5 \mathrm{~cm}^{3}\right)$ and evaporated. Trituration of the residue with hot ether ($3 \times 30 \mathrm{~cm}^{3}$) and evaporation gave an oil which was chromatographed on silica, with light petroleum-diethyl ether ($1: 1$) as eluent to give firstly the β-D-ribofuranosylalkyne $9(0.52$ $\mathrm{g}, 52 \%$) as an oil, $[\alpha]_{\mathrm{D}}-5.5\left(c 2.52, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.16\left(6 \mathrm{H}, \mathrm{dt}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.35$ and 1.53 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), 3.45-3.55 and 3.59-3.68 (each $2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Me}$), 3.78 (1 H , dd, $J 10.8,5.1,8_{\mathrm{a}}-\mathrm{H}$), $3.81(1 \mathrm{H}, \mathrm{dd}, J 10.8$, $\left.6.6,8_{\mathrm{b}}-\mathrm{H}\right), 4.19(1 \mathrm{H}$, ddd, $J 6.7,5.1,1.85,7-\mathrm{H}), 4.68\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5}\right.$ $\left.2.9,{ }^{5} J_{4.1} 1.4,4-\mathrm{H}\right), 4.75\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6} 6.2, J_{5,4} 2.85,5-\mathrm{H}\right), 4.78$ (1 H , dd, $\left.J_{6,5} 6.2, J_{6,7} 1.85,6-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{d}, J_{1,4} 1.4,1-\mathrm{H}\right), 7.4$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and $7.7(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(22.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.2$ $\left(\mathrm{CMe}_{3}\right), 14.9,25.3$ and 26.8 (each Me), 60.8 and $63.5\left(\mathrm{CH}_{2}\right)$, 74.5, $82.7,85.8$ and 86.1 (C-4-C-7), 82.0 and 82.9 (alkyne), 91.4 $\left[\mathrm{CH}(\mathrm{OEt})_{2}\right], 113.5\left(\mathrm{CMe}_{2}\right), 127.6,129.7,133.2$ and 135.6 [Found: $\mathrm{MNH}_{4}{ }^{+}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 556.3090$. Calc. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{NO}_{6} \mathrm{Si}$, 556.3086].

Further elution of the column gave the α-D-ribofuranosylalkyne $(0.106 \mathrm{~g}, 10 \%)$, as an oil, $[\alpha]_{\mathrm{D}}-35.0\left(c 0.8, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.23(6 \mathrm{H}$, dt, $\mathrm{CH}_{2} \mathrm{Me}$), 1.38 and 1.57 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $3.52-3.88(6 \mathrm{H}, \mathrm{m})$, $4.18(1 \mathrm{H}, \mathrm{t}, J 2.8,7-\mathrm{H}), 4.85(2 \mathrm{H}, \mathrm{m}), 5.05(1 \mathrm{H}, \mathrm{dd}, J 3.5,1.25$, $4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J 1.25,1-\mathrm{H}), 7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.6(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(22.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 73.8,82.4,83.1$ and 84.3 (C-4-C-7).

Further elution gave the β-L-lyxo-isomer $(0.074 \mathrm{~g}, 7 \%)$ as an oil, $[\alpha]_{\mathrm{D}}-34.5\left(c \quad 0.52, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.22\left(6 \mathrm{H}, \mathrm{dt}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.33$ and 1.40 (each 3 H ,
$\mathrm{s}, \mathrm{CMe}_{2}$), $3.50-3.82(5 \mathrm{H}, \mathrm{m}), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J 10.3,5.8,8_{\mathrm{a}-\mathrm{H})}\right.$, 3.99 (1 H, dd, $\left.J 10.3,6.7,8_{\mathrm{b}}-\mathrm{H}\right), 4.24(1 \mathrm{H}$, dd, $J 3.5,1.2,4-\mathrm{H})$, $4.72(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}), 5.33(1 \mathrm{H}, \mathrm{d}, J 1.2,1-\mathrm{H}), 7.4(6 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$ and $7.7(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(22.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 72.5,80.7,81.7$ and 82.1 (C-4-C-7).

Acknowledgements

We thank Professor J. G. Buchanan (University of Bath) for helpful discussions and encouragement, and EPSRC for a ROPA award (to G. S.) and for access to central facilities for mass spectrometry at the University of Wales, Swansea (Director, Dr J. A. Ballantine).

References

1 For a review, see J. G. Buchanan, Fortschr. Chem. Org. Naturst., 1983, 44, 243.
2 J. G. Buchanan, A. H. Jumaah, G. Kerr, R. R. Talekar and R. H. Wightman, J. Chem. Soc., Perkin Trans. I, 1991, 1077.

3 J. G. Buchanan, A. Stobie and R. H. Wightman, Can. J. Chem., 1980, 58, 2624.
4 J. G. Buchanan, A. Stobie and R. H. Wightman, J. Chem. Soc., Perkin Trans. 1, 1981, 2374.
5 J. G. Buchanan, A. R. Edgar, R. J. Hutchison, A. Stobie and R. H. Wightman, J. Chem. Soc., Perkin Trans. I, 1980, 2567.

6 N. A. Hughes and P. R. H. Speakman, Carbohydr. Res., 1965, 1, 171.

7 N. T. Anh, Top. Curr. Chem., 1980, 88, 145.
8 S. Jiang, B. Mekki, G. Singh and R. H. Wightman, Tetrahedron Lett., 1994, 35, 5505.
9 S. Jiang, G. Singh and R. H. Wightman, unpublished results.

Paper 5/05958E
Received 8th September 1995
Accepted 14th September 1995

[^0]: \dagger The structures of the minor products were supported by NMR data, in particular the progressive upfield shifts of C-4, $-5,-6$ and -7 in the series 9, α-anomer, β-L-lyxo-isomer, as would be expected on the basis of steric factors.
 $\ddagger[\alpha]_{\mathrm{D}}$ values in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.
 $\S J$ Values in Hz .

